a2 United States Patent

Deshpande

US009426468B2

US 9,426,468 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

SIGNALING LAYER DEPENDENCY
INFORMATION IN A PARAMETER SET

Applicant: Huawei Technologies Co., Ltd.,
Shenzhen (CN)
Inventor: Sachin G. Deshpande, Camas, WA (US)

Assignee: Huawei Technologies Co., Ltd.,

Shenzhen (CN)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 154 days.

Appl. No.: 14/145,598

Filed: Dec. 31, 2013

Prior Publication Data
US 2014/0192900 A1 Jul. 10, 2014

Related U.S. Application Data

Provisional application No. 61/749,150, filed on Jan.
4,2013.

Int. Cl1.

HO4N 19/70 (2014.01)

HO4N 19/30 (2014.01)

U.S. CL

CPC HO4N 19/00884 (2013.01); HO4N 19/30

(2014.11); HO4N 19/70 (2014.11)
Field of Classification Search
CPC HO4N 19/00884
USPC 372/240.26
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0230431 Al* 9/2012 Boyce HO4N 19/30

375/240.25

2013/0034170 Al
2014/0269934 Al

2/2013 Chen et al.
9/2014 Haque et al.

FOREIGN PATENT DOCUMENTS

WO 2014098703 Al 6/2014

WO 2014162739 Al 10/2014

WO 2015009843 Al 112015
OTHER PUBLICATIONS

B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 50 pgs., Part 1.
B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 50 pgs., Part 2.
B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 50 pgs., Part 3.
B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 50 pgs., Part 4.
B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 50 pgs., Part 5.

(Continued)

Primary Examiner — Yulin Sun
(74) Attorney, Agent, or Firm — Leydig, Voit & Mayer, Ltd.

(57) ABSTRACT

A system for decoding a video bitstream includes receiving a
frame of the video that includes at least one slice and at least
one tile and where each of the at least one slice and the at least
one tile are not all aligned with one another.

9 Claims, 29 Drawing Sheets

Supplier 104

._~Source 106

Electronic Device 102

Encoder 108

Intra Mode
information 128

Intra Prediction
Module and

—>

122

12
Entropy Coding

126 Bitstream

134

~[>>| Reconstruction
Buffer 110 Transformation

Module 120

)

Module 130
Quantlzation
Module 124

116
Inter Signal 114

Motion
Estimation and
Motion

Compensation

il

k Inter Mode

Module 136 Information 138

Y

168_| 160 154

SAO Information 158 -/

142
Inverse Quantization Module 140 "—Cl

Reference
Picture
Buffer 166

]j i
ALF 162

SAD
Module 156

Dehl

king Reconstruction

Filter 152

Module 148

Inverse

Transformation
14s|_ Module 144

N—150

US 9,426,468 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

B. Bross et al., “High efficiency video coding (HEVC) text specifi-
cation draft 8,” JCTVC-J1003, 10th Meeting, Stockholm, SE, Jul.
11-20, 2012, 10 pgs., Part 6.

Y.-K. Wang, “BoG on high-level syntax for extension planning,”
JCTVC-J0574, Stockholm, Jul. 2012, 17 pgs.

M.M. Hannuksela (Nokia), “AHG10 Hooks for Scalable Coding:
Video Parameter Set Design,” JCTVC-J0075, Stockholm, Jul. 2012,
9 pgs.

Y. Chen, Y.-K. Wang (Qualcomm), “AHG 10: On video parameter set
for HEVC extensions,” JCTVC-J0124, Stockholm, Jul. 2012, 15 pgs.
J. Boyce (Vidyo), “VPS syntax for scalable and 3D extensions,”
JCTVC-J0576, Stockholm, Jul. 2012, 3 pgs.

B. Choi, J. Kim, J. Park (Samsung), “On NAL Unit Header and Video
Parameter Set Design,” JCTVC-J0432, Stockholm, Jul. 2012, 3 pgs.

R. Skupin, V. George, T. Schierl, “AHG9/AHG10: Design of the
video Parameter Set,” JCTVC-J0257, Stockholm, Jul. 2012, 17 pgs.
Schwarz et al., “Overview of the Scalable Video Coding Extension of
the H.264/AVC Standard,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 17, No. 9, Institute of Electrical and
Electronics Engineers, New York, New York (Sep. 2007).

Wang et al., “MV-HEVC/SHVC HLS: On VPS and SPS in HEVC
3DV and scalable extensions,” Joint Collaborative Team on 3D Video
Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 4" Meeting, Incheon, Korea, Document JCT3V-D0047
(Apr. 20-26, 2013).

Kang et al., “Simple NAL Unit Header for HEVC,” Joint Collabora-
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGl1, 8" Meeting: San Jose, California,
Document JCTVC-H0410 (Feb. 1-10, 2012).

Notice of Allowance in corresponding U.S. Appl. No. 14/080,597
(Oct. 26, 2015).

* cited by examiner

US 9,426,468 B2

Sheet 1 of 29

Aug. 23, 2016

U.S. Patent

1 'Ol

05T

T °INPOIA
uoewIosuel| A N
BSIOAU|

4

8¥T 3NPOA
> uonINIISUOIAY

h 4

A

[A4" ~/

OvT 3[NPOIAl UOIIBZIZUBNY) 9SiaAU|

A

ST 49314

98T SINPON

ovs

99T feling
34n11d

Supolgsa dv
¥ST

8GT uanEWIOW| OYS
~

QET UONEBWIOU]
IpOIN J31U| /

9T 41V
N,v Nv CRIEICIEN|
091 o1

gy

h A

A

¢

eT
weaJ1sig

0¢T |MpoN
Suipon Adoanug

YTT [RUSIS J33Y)
91T

A

%

VT SINpON oct

SjNpony

uonewIojsue.l j

9¢T

uopezpuen) _m
(44>

9¢ET 3inpoy
uonesuadwo)
UOLION
‘PUE UCIJEWIIST
uollo

l—

)

|71 UopewIou|

DPON el

80T Jspoouz

OTT 18}ng
UOI12NI1ISU0IDY
pue 3jnpow
UOIDIPaId BIY|

«—e

[

70T 221A3(J1U0I3[I

90T 924n0g/ ™

QT 401ddng _

¢ 'Sl

US 9,426,468 B2

Sheet 2 of 29

Aug. 23, 2016

[4:14 v
24nid 06t 96¢ ¥6¢ 3[NPOIN
papooag Alowaln aweld OAW? uonesusdwoy |*
X Uonow
[
LET <07
TOZ @INPON
€ETAV uoILpald
auield-enu]
GEC
=] x 867"
TET 6€ET
3INPON OV'S v
x «
88T _
98z 42314 P i 08¢ SINPoiN
. A\ 4 <
Suppolqed » (+ ¢ UOHBWLIOJSURL| SSIaAU] p /7 BINPON /
w97 757 pue UolIRZIIUENT) SSI9AU| 8L¢ Buipgaag Adosug peT
weaJ1slig
2L¢ 19p0o39Qd

0/ 931A3(Q J1U0J1I8|]

U.S. Patent

US 9,426,468 B2

Sheet 3 of 29

Aug. 23, 2016

U.S. Patent

Alql

¢6€ 24nPld

L Jopodag
papoaad

¢ O

A

0/ g 221N J1U0J303|3

\

tee
weansig

T

QOE 49pooU3 90¢
321n0g

ZOE V 921A8(J1U0J1I3|]

US 9,426,468 B2

Sheet 4 of 29

Aug. 23, 2016

U.S. Patent

¥ "Old

ZT¥ S921A3Q Induj

6Iv
JTELIIU| UCIIEDIUNLILIOD

4491y Bleqg

gt suonanasy|

£Z¥ 19|j043u0) Aejdsig

/T 105592044
gzy Aepdsig
bGeTE Bleg
DETE SUORINIISU|
cZv SadiAs(indinQ

TTH Adoway

60 321A3(] 21U

U.S. Patent Aug. 23,2016 Sheet 5 of 29 US 9,426,468 B2
(o] (] o
o m <
NN \
o
A
3 3
wn %3]
2183 3 L
R - &
Lot = 1
O [XE) Q
= o 5
w -l w
N

507

US 9,426,468 B2

Sheet 6 of 29

Aug. 23, 2016

U.S. Patent

owm\\\

0SS

9 'Dl4
CH dMOYD OIS
605 //
[A
1# dnoyo|3ons
05 05
90s
q0s v0S
¢0s { zos
x
\ O JNOYUD HEDITS
y 105
085

045

US 9,426,468 B2

Sheet 7 of 29

Aug. 23, 2016

U.S. Patent

SAWVYANNOY MOY

L Dl
9¢T | GC¢T | ¥CT | OCT | 6TT |8TT | LTT | OTT | STT § 80T | LOT | 90T | SOT | 0T
ECT | CCT | TCT | PIT [ETT{CIT [TTT { OTT | 60T §€OT | COT | TOT {OOT | 66
86 | L6 | 9698 | S8 V8| €8 |78 | T8 ¢Co |18 |09 |65|8S
G6 | V6 | €6 | 08 | 6L | 8L | LL } 9L | SL L9995 | &5 | VS | ES
6|16 |06 VL |EL|TL|TL|OL]| 69 ES|TS|0S |6V (8
68 [88 | /8189|4999 |9 |VO|ES)Liv|oh | Sy |Pp | EV
v | T | OF JEE|CE | TE|OE j6C | BCST VT [€T | 2T | TT
BE | BE | LEJLC | ST ST |vTiec|TCyOT| 6 8 | L 9
ge f se | vEJTCc|OC | 6T | ST | LT 9T} S | ¥ 1 4 T

V/ S3HVYANNOY NIWNTOD .\A

US 9,426,468 B2

Sheet 8 of 29

Aug. 23, 2016

U.S. Patent

8 'Dld
€300S
|
QCT | SCT|vCT] 66 | 86 | L6 | 96 } S6 | ¥6 | €6 | 9€ | SE€ | ¥E | €€
ECTL|CCT|TCT 6 |16 |06 | 68 | 88 | L8 | 98] Ce | TE | OE | 6C
OCT {6TT|8TT| S8 | ¥8 | €8 | ¢B | I8 | 08 | 6L | 8C | L€ | 9C | SC
LIT|OTT|STTY 8LV LL V9L | SL Y VL | €L |TL VT | €T | CC | TC
PIT|ETT|CIT| TL | OL {69 | 83 | L9 |99 |SO JOC 6T |S8T|LT
TIT|OTT|[60T| ¥9 { €9 | C9 | T9 | 09 | 6S | 89 J 9T | ST | ¥T | €1
got |20t |90t] £s |os |ss{vs|es|es|tsfjer|t|oT] 6
SOT [YOT |€OTJ OS 67 [By | LV Oy [SV | PP | @ L |9 §
COT(TOT|OOT) er | ¢ | 1 | OV | 6E | 8E | LE} V¥ €| C T

SIIMVANNOE z_>_38|\

— € 32175

—Z A311S

— T 3D11S

U.S. Patent

FIG. 9C

Aug. 23,2016 Sheet 9 of 29 US 9,426,468 B2
nal unit_header() { Descriptor
forbidden_zero_hit (1)
nal_unit_type u(6)
nuh_reserved_zero_6bits u(6)
noh_temporal_id_plusl u(3)

}

NAL UNIT HEADER SYNTAX
nal_unit_header() { Descriptor
forbidden_zero_bit Ji€))
nal_unit_type u(6)
layer_id plusl u(6)
nuh_temporal_id_plusl u(3)
}

NAL UNIT HEADER SYNTAX
nal_unit_header() { Descriptor
forbidden_zero_bit (1)
nal_unit_type u(6)
layer_id u(6)
nuh_temporal id_plusl u(3)
}

NAL UNIT HEADER SYNTAX

U.S. Patent Aug. 23,2016 Sheet 10 of 29 US 9,426,468 B2

nal unit(NumBytesInNALunit) { Descriptor
nal unit header()
NumBytesInRBSP = 0
for(i=2; i <NumBytesInNALunit; i++) {
if(i+ 2 <NumBytesilnNALunit && next_bits(24) == 0x000003) {
rbsp_byte] NumBytesmRBSP++ | b(8)
rbsp_byte[NumBytesinRBSP+] b(8)
i+=2
emulation_prevention_three_byte /* equal to 0x03 */ (8)
} else
rbsp_byte[NumBytesInRBSP++] b(8)
; ,
}
GENERAL NAL UNIT SYNTAX

FIG. 10

U.S. Patent Aug. 23,2016 Sheet 11 of 29 US 9,426,468 B2

vps_extension() { Descriptor
while(Ibyte_aligned())
vps_extension_byte_alignment_reserved_zero_hit u(1)
// scalability type and layer_id partitioning method
scalability_type u(4)
for(1= 0; i < MaxDim(scalability_type); i++)
layer_id_dim_len[i] u(3)

// layer specific information

for(i=0;i<= max_num_layers_minusAl; i++) §
vps_layer_id[i] ' u(6)
/l ayer dependency

num_direct_ref layers[i] u(6)

for(j = 0; j <num_direct_ref layers[i]; j++)
vef layer id[i][j] u(6)

Existing video parameter set extension syntax

FIG. 11

U.S. Patent Aug. 23,2016 Sheet 12 of 29 US 9,426,468 B2

sealability type | MaxDim(scalability type) Scalability dimensions
0 1 none (base HEVC)

spatial and quality

spatial, quality, unspecified

spatial, quality, unspecified, unspecified

multiview and depth

multiview, depth, unspecified

multiview, depth, unspecified, unspecified

multiview, spatial, quality and depth

[T 1T SR - AT I § N

multiview, spatial, quality, depth, unspecified

1
2
3
4
5
6
7
8
9

6 multiview, spatial, quality, depth, unspecified, unspecified

10...15 reserved reserved

Existing Scalability Types

FIG. 12

U.S. Patent Aug. 23,2016 Sheet 13 of 29 US 9,426,468 B2

vps_extension() { Descriptor
while(byte_aligned())
vps_extension_byte alignment_reserved_zero_bit u(l)

/1 Scalability map and layer id_plusl mapping method

for (i=0;i<= max_num layers minusl_bits; i++) {
scalability_mapli] u(3)

}

// layer specific information

for(i=0;i<=max_num_layers_minusl; i++) {

vps_layer idfi] u(6)
// layer dependency
num_direct_ref layers[i] u(6)

for(j=0;j <num_direct ref layers[i];j++)
ref layer_id[i][j] u(6)

Video parameter set extension syntax

FIG. 13

U.S. Patent Aug. 23,2016 Sheet 14 of 29

Scalability map]i]

Scalability
dimension

none (base HEVC)

spatial

quality

depth

multiview

L | h | W | |- o

unspecified

6,7

reserved

Scalability Map Syntax

FIG. 14

US 9,426,468 B2

U.S. Patent Aug. 23,2016 Sheet 15 of 29 US 9,426,468 B2

vps_extension() { Descriptor
while(!byte_aligned())
vps_extension_byte_alignment_reserved_zero_bit u(l)
// scalability map and layer_id plusl mapping method
num_scalability _dimensions_minusl u(3)
for(i=0;i<=num_scalability_dimensions_minus!; i++) {
scalability _mapli] u(3)
num_bits_for scalability_mapl[i} u(3)

1

// layer specific information

for(i=0; i <=max_num_layers_minusl; i++) {
vps_layer_id[i] u(6)
// layer dependency

num_direct_ref layersfi] u(6)

for(j = 0; j <num_direct_ref layers[i]; j++)
ref Jayer id[i][j] u(6)

Video parameter set extension syntax

FIG. 15

U.S. Patent Aug. 23,2016 Sheet 16 of 29 US 9,426,468 B2

vps_extension() { Descriptor
while(Ibyte_aligned())
vps_extension_byte_alignment_reserved_zero_bit u(l)

// layer specific information

for(i=1;i<=vps max_layers_minusl; i++) {
// mapping of layer ID to scalability dimension IDs

num_dimensions_minus1[i] uw4)
for(j = 0; j <=num_dimensions_minusl; j++) {
dimension_type[i][j] n{4)
dimension_id[1]{]] u(8)
}
// layer dependency
num_direct_ref layers[i] u(6)
for(j = 0; j <num_direct_ref layers[i]; j++)
ref layer id[i][]j] u(6)

Existing video parameter set extension syntax

FIG. 16

U.S. Patent Aug. 23,2016 Sheet 17 of 29 US 9,426,468 B2

dimension type[i][j] | dimension id[i][]]
0 view order idx
1 depth flag
2 dependency 1D
3 quality ID
4,15 reserved

Existing Dimension Type, Dimension ID Syntax

FIG. 17

U.S. Patent Aug. 23,2016 Sheet 18 of 29 US 9,426,468 B2

vps_extension() { Descriptor
while(lbyte_aligned())
vps_extension_byte_alignment_reserved_zero_bit u(1)

// laycr specific information

for(i=1;i<=max_num_layers minusl; i++) {

// mask signalling scalability types that are present for this layer ID

scalability_mask | w(®
for(j=0; j <=num_scalability types[i]; j++) {

scalability_id[j] [u(®)
}
/] layer dependency
num_direct _ref layers[i] u(6)
for(j=0;j <num_direct ref layers[i]; j++)

ref layer id[i][j] u(6)

}
}

Video parameter set extension syntax

FIG. 18

U.S. Patent

Aug. 23, 2016 Sheet 19 of 29

scalability mask bit[Kk] Scalability
dimension
0 spatial
1 quality
2 depth
3 multiview
4-15 Reserved

Scalability Map Syntax

FIG 19

US 9,426,468 B2

U.S. Patent Aug. 23,2016 Sheet 20 of 29

US 9,426,468 B2

yideo parameter_set rbsp() { Descriptor
video_parameter_set_id u(4)
vps_temporal_id_nesting_flag u(t)
reserved_zero_2bits u(2)
max_num_layers_minusl //reserved_zero_6bits u(6)
vps_max_sub_layers_minusl u(3)
profile_level(1, vps_max_sub_layers minus])
next_essential_info_byte_offset //reserved zero_12bits u(12)
for(i=0;1<=vps_max_sub_layers minusl; i++) {
vps_max_dec_pic_buffering] i} ue(v)
vps_max_num_reorder_pies[i] ue(v)
vps_max_latency_increase[i] ue(v)
}
num_hrd_parameters ue(v)
for(i=0; i <num_hrd_parameters; i++) {
if(i>0)
op_point(i)
hrd_parameters(i == 0, vps_max_sub_layers_minusl)
}
bit equal fo_one u(1)
scalability mask u(8)
for(i=10; i <=max_num_layers minusl; ++) {
vps_extension_data()
}
vps_extension_flag u(l)
if(vps_extension .flag)
while(more rbsp data())
vps_extension_data_flag u(l)
rhsp_trailing_bits()
}
}

Video parameter set extension syntax

F1G. 20

U.S. Patent Aug. 23,2016 Sheet 21 of 29

US 9,426,468 B2

vps_extension_data() { Descriptor

vps_extension_type u(2)
layer_id u(6)
layer_max_sub_layers minusl u(3)
new_profile_level flag u(1)
if (new_profile_level flag==10) {

profile_reference layer id u(6)
}
else {

profile level(1, layer max sub_layers minusl)
}
for(j=0;j <=num scalability types;j++) {

scalable id[j] u(8)
}
num_reference_layers u(6)
for(n=0; n <num reference layers;n++)

direct_coding_dependency layer id_plus1i[n] u(6)
1

Video parameter set extension syntax

FIG. 21

U.S. Patent Aug. 23,2016 Sheet 22 of 29 US 9,426,468 B2

vps_extension() { Deseriptor
while(lbyte_aligned())]
vps_extension_byte_alignment reserved one bit ufl)
ave_base codee_flag u(1)
scalability_mask u(16)
for(i="0; i NumScalabilityTypss; 14-1) {
dimension_id_len_minus1[i] u(3)
¥
vps_nuh_layer_id_present_flag u(l)

/ layer specific information

for{i=1;1 <= vps_max_layers minusl;) {

mapping of layer ID to scalability dimension IDs

if{ vps_nuh_layer id present flag)

layer_id_in_nuh[i] u(6)
for(j = 0; j <NumScalabilityTypes; j++)
dimension_id[1][j] wve)

}

for(i=1; 1<~ vps_max_layers_minusl ; i++)

profile tier level(1, vps_max_sub_layers_minus1)

for(i=1; i<= vps_max_layers_minusl; i++) {

layer dependency

num_direct ref layers[i] u(6)

for(j =0; j <num_direct_ref layers[1i]; j++)
ref layer id[1][]] u(6)

Video Parameter Set Extension Synfax

FIG. 22

U.S. Patent

Aug. 23, 2016 Sheet 23 of 29

scalability_mask’s Scalability
K’th bit dimension
0 spatial
1 quality
2 depth
multiview
4-15 Reserved

Scalability mask Syntax

FIG 23

US 9,426,468 B2

U.S. Patent Aug. 23,2016 Sheet 24 of 29 US 9,426,468 B2
vps_extension() { Descriptor
while(Ibyte aligned())
vps_extension_byte_alignment_reserved_one_bit u(l)
ave_base_codec_flag u(l)
scalability_mask u(16)
for(i=0; i <NumScalabilityTypes; i++) {
dimension_id_len_minus1[i] u(3)
}
vps_nuh_layer_id_present_flag u(l)
/! layer specific information
for(i=1;1i<=vps max layers minusl;i++) {
// mapping of layer ID to scalability dimension IDs
if(vps_nuh_layer id present flag)
layer_id_in_nuh[i] u(6)
for(j=0;j <=num dimensions minusl; j++)
dimension_id[i][j] u(v)
}
for(i=1;1i<=vps_max layers_minusl ; i++)
profile tier level(1, vps max sub_layers minusl)
layer_dependency_information_pattern w(v)
for(i=1; i <= NumDepLayers; i++) {
// layer dependency information signaling
num_direct_ref layers[i|] u(6)
for(j = 0; j <num_direct_ref layers[i]; j++)
ref layer id[i][}] u(6)
}
}

Video Parameter Set Extension Syntax

FIG. 24

U.S. Patent Aug. 23,2016 Sheet 25 of 29 US 9,426,468 B2

vps_extension() { Descriptor

while(lbyte _aligned())

vps_extension_byte alignment_reserved_one_bit u(l)
ave_base_codec_flag u(l)
scalability_mask ' u(16)
for(i=0; i <NumScalabilityTypes; i++) {

dimension_id_len_minus1]i] u(3)
}
vps_nuh_layer_id_present_flag u(l)

// layer specific information

for(i=1;i<=vps max_layers_minusi; i++) {

// mapping of layer ID to scalability dimension IDs

if(vps_nuh_layer id present flag)

layer_id_in_nuh[i] u(6)
for(j = 0; j <= num_dimensions_minus1; j++)
dimension_id[i]]j] u(v)

}

for(i=1;i<= vps_max_layers_minus] ; i+)

profile_tier level(1, vps_max_sub_layers_minus])

for(i=1;i<=vps _max layers minusl;i++) {

// layer dependency information signaling

layer_dependency_{flag]i] u(1)
if{layer dependency_flag[i]) {
num_direct_ref layers|[i] u(6)
for(j = 0;j <num_direct ref layers[i];j++)
ref_layer id[i][j] u(6)
}
}

Video Paramcter Set Extension Syntax

FI1G. 25

U.S. Patent Aug. 23,2016 Sheet 26 of 29 US 9,426,468 B2

vps_extension() { Descriptor

while(!byte aligned())

vps_cxtension_byte_alignment_reserved_one_bit u(l)
ave_base_codec_flag u(l)
scalability_mask u(16)
for(i=0; i <NumScalabilityTypes; i++) {

dimension_id_len_minus1[i] u(3)
}
vps_nuh_layer id present flag u(l)

// layer specific information

for(i=1; 1 <=vps_max_layers minusl; i++) {

// mapping of layer ID to scalability dimension IDs

if(vps_nuh_layer id_present flag)

layer_id_in_nuh[i] u(6)

for(j = 0; j <= num_dimensions_minus1; j++)

dimension_id[i][j] u(v)

}

for(i=1; i <= vps_max_layers minusl ;i++)

profile tier level(1, vps_max_sub_layers minusl)

for(i=1;i<=vps_max_layers minusl; i++) {

// layer dependency information signaling

layer dependency_ mapli] u(v)

Video Parameter Set Extension Syntax

FIG. 26

U.S. Patent Aug. 23,2016 Sheet 27 of 29

US 9,426,468 B2

vps_extension() {

Descriptor

while(!byte_aligned())

vps_extension_byte_alignment_reserved_one_bit

u(l)

avc_base_codec_flag

u(l)

scalability_mask

u(16)

for(i=0; i <NumScalabilityTypes; i++) {

dimension_id_len_minus1[i]

u(3)

}

vps_nuh_layer_id_present_flag

u(l)

// layer specific information

for(i=1;1<=vps max layers minusl;i++) {

// mapping of layer 1D to scalability dimension IDs

if(vps_nuh_layer_id_present_flag)

layer_id_in nuh[i]

u(6)

for(j = 0; j <= num_dimensions_minus1; j++)

dimension_id[i][j1

u(v)

}

for(i=1;1<=vps_max layers minusl ; i++)

profile_tier level(1, vps_max_sub_layers_minus1)

layer_dependency_information_pattern

u(v)

for(i=1; 1 <= NumDepLayers; i++)

layer_dependency_mapl[i]

u(v)

Video Parameter Sel Exlension Syntax

FIG. 27

U.S. Patent Aug. 23,2016 Sheet 28 of 29 US 9,426,468 B2

vps_extension() { Descriptor

while(Ibyte_aligned())

vps_extension_byte_alignment reserved_one_bit u(1)
ave_base_codec_flag u(1)
scalability_mask u(16)
for(i =0; i <NumScalabilityTypes; i++) {

dimension_id_len_minus1[i] u(3)
}
vps_nuh_layer_id present flag u(l)

// layer specific information

for(i=1;i<=vps max layers_minusl; i++) {

// mapping of layer ID to scalability dimension IDs

if{ vps_nuh_layer id_present flag)

layer_id_in nuh[i] u(6)

for(j =0; j <=num_dimensions_minusi; j++)

dimension_id[i][j | u(v)

}

for(i=1;i<=vps_max layers minus] ; i++)

profile tier level(1, vps_max_sub_layers_minus])

layer_dependency_information_pattern u(v)

for(i=1;1i<=vps max layers minusl;i++) {

if(layer_dependency information pattern(i)) {

/[Tayer dependency information signaling

num_direct _ref layers[i] u(6)
for(j=0;j <num_direct ref layers[i]; j++)
ref_layer_id]i]]j} u(6)
}
}

Video Parameter Set Extension Syntax

FIG. 28

U.S. Patent Aug. 23,2016 Sheet 29 of 29

US 9,426,468 B2

vps_extension(} {

Descriptor

while([byte_aligned())

vps_extension_byte_alignment_reserved_one_bit

u(l)

ave_base_codec_flag

u(1)

scalability _mask

u(16)

for(i = 0; i <NumScalabilityTypes; i++) {

dimension_id_len_minusI[i]

u(3)

}

vps_nuh_layer_id_present_flag

u(1)

/ layer specific information

for(i=1;i<=vps max layers minust; i++) {

// mapping of layer ID to scalability dimension IDs

if(vps_nuh_layer id present flag)

layer_id_in_nuh] i]

u(6)

for(j=0;j <=num_dimensions_minus]; j++)

dimension_id|i]]j |

u(v)

}

for(i=1;i<~=vps max layers minusl ;it+)

profile_tier_level(1, vps_max sub_layers minusl)

layer_dependency_information_pattern

u(v)

for(i=1; i <= vps_max_layers_minusl; i++) {

if(layer dependency_information_pattern(i)) {

layer_dependeney mapfi]

u(v)

Video Parameter Set Extension Syntax

T'1G. 29

US 9,426,468 B2

1
SIGNALING LAYER DEPENDENCY
INFORMATION IN A PARAMETER SET

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
App. No. 61/749,150, filed Jan. 4, 2013.

BACKGROUND OF THE INVENTION

The present invention relates to video encoding and decod-
ing.

Electronic devices have become smaller and more power-
ful in order to meet consumer needs and to improve portabil-
ity and convenience. Consumers have become dependent
upon electronic devices and have come to expect increased
functionality. Some examples of electronic devices include
desktop computers, laptop computers, cellular phones, smart
phones, media players, integrated circuits, etc.

Some electronic devices are used for processing and/or
displaying digital media. For example, portable electronic
devices now allow for digital media to be produced and/or
consumed at almost any location where a consumer may be.
Furthermore, some electronic devices may provide download
or streaming of digital media content for the use and enjoy-
ment of a consumer.

Digital video is typically represented as a series of images
or frames, each of which contains an array of pixels. Each
pixel includes information, such as intensity and/or color
information. In many cases, each pixel is represented as a set
of'three colors. Some video coding techniques provide higher
coding efficiency at the expense of increasing complexity.
Increasing image quality requirements and increasing image
resolution requirements for video coding techniques also
increase the coding complexity.

The increasing popularity of digital media has presented
several problems. For example, efficiently representing high-
quality digital media for storage, transmittal, and playback
presents several challenges. Techniques that represent digital
media more efficiently is beneficial.

The foregoing and other objectives, features, and advan-
tages of the invention will be more readily understood upon
consideration of the following detailed description of the
invention, taken in conjunction with the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating one configuration of
an electronic device including a HEVC encoder.

FIG. 2 is a block diagram illustrating one configuration of
an electronic device including a HEVC decoder.

FIG. 3 is a block diagram illustrating one example of an
encoder and a decoder.

FIG. 4 illustrates various components that may be utilized
in an electronic device.

FIG. 5 illustrates an exemplary slice structure.

FIG. 6 illustrates another exemplary slice structure.

FIG. 7 illustrates a frame with a slice and 9 tiles.

FIG. 8 illustrates a frame with three slices and 3 tiles.

FIGS. 9A-9C illustrates different NAL Unit header syntax.

FIG. 10 illustrates a general NAL Unit syntax.

FIG. 11 illustrates an existing video parameter set.

FIG. 12 illustrates existing scalability types.

FIG. 13 illustrates an exemplary video parameter set.

10

20

40

45

50

55

60

2

FIG. 14 illustrates an exemplary scalability map syntax.

FIG. 15 illustrates an exemplary video parameter set.

FIG. 16 illustrates an existing video parameter set.

FIG. 17 illustrates an existing dimension type, dimension
id syntax.

FIG. 18 illustrates an exemplary video parameter set.

FIG. 19 illustrates an exemplary scalability map syntax.

FIG. 20 illustrates an exemplary video parameter set.

FIG. 21 illustrates an exemplary video parameter set.

FIG. 22 illustrates an exemplary video parameter set.

FIG. 23 illustrates an exemplary scalability mask syntax.

FIG. 24 illustrates an exemplary video parameter set exten-
sion syntax.

FIG. 25 illustrates an exemplary video parameter set exten-
sion syntax.

FIG. 26 illustrates an exemplary video parameter set exten-
sion syntax.

FIG. 27 illustrates an exemplary video parameter set exten-
sion syntax.

FIG. 28 illustrates an exemplary video parameter set exten-
sion syntax.

FIG. 29 illustrates an exemplary video parameter set exten-
sion syntax.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

The Joint Collaborative Team on Video Coding (JCT-VC)
of the International Telecommunication Union Telecommu-
nication Standardization Sector (ITU-T) Study Group 16
(SG16) Working Party 3 (WP3) and International Organiza-
tion for Standardization/International Electrotechnical Com-
mission (ISO/IEC) Joint Technical Committee 1/Subcommit-
tee 29/Working Group 11 (JTC1/SC29/WG11) has launched
a standardization effort for a video coding standard called the
High Efficiency Video Coding standard (HEVC). HEVC uses
block-based coding.

In HEVC, an entropy coding technique Context-Adaptive
Binary Arithmetic Coding CABAC)) is used to compress
Transformed and Quantized Coefficients (TQCs) without
loss. TQCs may be from different block sizes according to
transform sizes (e.g., 4x4, 8x8, 16x16,32x32).

Two-dimensional (2D) TQCs may be converted into a one-
dimensional (1D) array before entropy coding. In one
example, 2D arrayed TQCs in a 4x4 block may be arranged as
illustrated in Table (1).

TABLE (1)
4 0 0
3 2 _
-3 0

When converting the 2D TQCs into a 1D array, the block
may be scanned in a diagonal zig-zag fashion. Continuing
with the example, the 2D arrayed TQCs illustrated in Table
(1) may be converted into 1D arrayed TQCs [4, 0,3, -3, 2, 1,
0,-1,0,...] by scanning the first row and first column, first
row and second column, second row and first column, third
row and first column, second row and second column, first
row and third column, first row and fourth column, second
row and third column, third row and second column, fourth
row and first column and so on.

The coding procedure in HEVC may proceed, for example,
as follows. The TQCs in the 1D array may be ordered accord-
ing to scanning position. The scanning position of the last

US 9,426,468 B2

3

significant coefficient and the last coefficient level may be
determined. The last significant coefficient may be coded. It
should be noted that coefficients are typically coded in reverse
scanning order. Run-level coding may be performed, which
encodes information about runs of identical numbers and/or
bits rather than encoding the numbers themselves, which is
activated directly after the last coefficient coding. Then, level
coding may be performed. The term significant coefficient
refers to a coefficient that has a coefficient level value that is
greater than zero. A coefficient level value refers to a unique
indicator of the magnitude (or absolute value) of a Trans-
formed and Quantized Coefficient (TQC) value.

This procedure may be illustrated in Table (2) as a continu-
ation of the example above (with the 1D arrayed TQCs [4, 0,

3,-3,2,1,0,-1,0,...]).

TABLE (2)
Scanning Position 0 1 2 3 4 5 6 7 ...
Coefficient Level 4 0 3 -3 2 1 0 -1 ...
Last Position 7
Last Coefficient Level -1
Run-Level Coding 2 1 0
Level Coding 4 0 3 -3

In Table (2), for example, the coefficient level -1 at scan-
ning position 7 may be the last non-zero coefficient. Thus, the
last position is scanning position 7 and the last coefficient
level is —1. Run-level coding may be performed for coeffi-
cients 0, 1 and 2 at scanning positions 6, 5 and 4 (where
coefficients are coded in reverse scanning order). Then, level
coding may be performed for the coefficient levels -3, 3, 0
and 4.

FIG. 1 is a block diagram illustrating one configuration of
an electronic device 102 in which video may be coded. It
should be noted that one or more of the elements illustrated as
included within the electronic device 102 may be imple-
mented in hardware, software, or a combination of both. For
example, the electronic device 102 includes a encoder 108,
which may be implemented in hardware, software or a com-
bination of both. For instance, the encoder 108 may be imple-
mented as a circuit, integrated circuit, application-specific
integrated circuit (ASIC), processor in electronic communi-
cation with memory with executable instructions, firmware,
field-programmable gate array (FPGA), etc., or a combina-
tion thereof. In some configurations, the encoder 108 may be
a high efficiency video coding (HEVC) coder.

The electronic device 102 may include a supplier 104. The
supplier 104 may provide picture or image data (e.g., video)
as a source 106 to the encoder 108. Examples of the supplier
104 include image sensors, memory, communication inter-
faces, network interfaces, wireless receivers, ports, etc.

The source 106 may be provided to an intra-frame predic-
tion module and reconstruction buffer 110. The source 106
may also be provided to a motion estimation and motion
compensation module 136 and to a subtraction module 116.

The intra-frame prediction module and reconstruction
buffer 110 may generate intra mode information 128 and an
intra signal 112 based on the source 106 and reconstructed
data 150. The motion estimation and motion compensation
module 136 may generate inter mode information 138 and an
inter signal 114 based on the source 106 and a reference
picture buffer 166 signal 168. The reference picture buffer
166 signal 168 may include data from one or more reference
pictures stored in the reference picture buffer 166.

The encoder 108 may select between the intra signal 112
and the inter signal 114 in accordance with a mode. The intra
signal 112 may be used in order to exploit spatial character-

10

15

20

25

30

35

40

45

50

55

60

65

4

istics within a picture in an intra coding mode. The inter signal
114 may be used in order to exploit temporal characteristics
between pictures in an inter coding mode. While in the intra
coding mode, the intra signal 112 may be provided to the
subtraction module 116 and the intra mode information 128
may be provided to an entropy coding module 130. While in
the inter coding mode, the inter signal 114 may be provided to
the subtraction module 116 and the inter mode information
138 may be provided to the entropy coding module 130.

Either the intra signal 112 or the inter signal 114 (depend-
ing on the mode) is subtracted from the source 106 at the
subtraction module 116 in order to produce a prediction
residual 118. The prediction residual 118 is provided to a
transformation module 120. The transformation module 120
may compress the prediction residual 118 to produce a trans-
formed signal 122 that is provided to a quantization module
124. The quantization module 124 quantizes the transformed
signal 122 to produce transformed and quantized coefficients
(TQCs) 126.

The TQCs 126 are provided to an entropy coding module
130 and an inverse quantization module 140. The inverse
quantization module 140 performs inverse quantization on
the TQCs 126 to produce an inverse quantized signal 142 that
is provided to an inverse transformation module 144. The
inverse transformation module 144 decompresses the inverse
quantized signal 142 to produce a decompressed signal 146
that is provided to a reconstruction module 148.

The reconstruction module 148 may produce reconstructed
data 150 based on the decompressed signal 146. For example,
the reconstruction module 148 may reconstruct (modified)
pictures. The reconstructed data 150 may be provided to a
deblocking filter 152 and to the intra prediction module and
reconstruction buffer 110. The deblocking filter 152 may
produce a filtered signal 154 based on the reconstructed data
150.

The filtered signal 154 may be provided to a sample adap-
tive offset (SAO) module 156. The SAO module 156 may
produce SAO information 158 that is provided to the entropy
coding module 130 and an SAO signal 160 that is provided to
an adaptive loop filter (ALF) 162. The ALF 162 produces an
ALF signal 164 that is provided to the reference picture buffer
166. The ALF signal 164 may include data from one or more
pictures that may be used as reference pictures. In some cases
the ALF 162 may be omitted.

The entropy coding module 130 may code the TQCs 126 to
produce a bitstream 134. As described above, the TQCs 126
may be converted to a 1D array before entropy coding. Also,
the entropy coding module 130 may code the TQCs 126 using
CAVLC or CABAC. In particular, the entropy coding module
130 may code the TQCs 126 based on one or more of intra
mode information 128, inter mode information 138 and SAO
information 158. The bitstream 134 may include coded pic-
ture data.

Quantization, involved in video compression such as
HEVC, is a lossy compression technique achieved by com-
pressing a range of values to a single quantum value. The
quantization parameter (QP) is a predefined scaling param-
eter used to perform the quantization based on both the qual-
ity of reconstructed video and compression ratio. The block
type is defined in HEVC to represent the characteristics of a
given block based on the block size and its color information.
QP, resolution information and block type may be determined
before entropy coding. For example, the electronic device
102 (e.g., the encoder 108) may determine the QP, resolution
information and block type, which may be provided to the
entropy coding module 130.

US 9,426,468 B2

5

The entropy coding module 130 may determine the block
size based on a block of TQCs 126. For example, block size
may be the number of TQCs 126 along one dimension of the
block of TQCs. In other words, the number of TQCs 126 in
the block of TQCs may be equal to block size squared. In
addition, the block may be non-square where the number of
TQCs 126 is the height times the width of the block. For
instance, block size may be determined as the square root of
the number of TQCs 126 in the block of TQCs. Resolution
may be defined as a pixel width by a pixel height. Resolution
information may include a number of pixels for the width of
apicture, for the height of a picture or both. Block size may be
defined as the number of TQCs along one dimension of a 2D
block of TQCs.

In some configurations, the bitstream 134 may be transmit-
ted to another electronic device. For example, the bitstream
134 may be provided to a communication interface, network
interface, wireless transmitter, port, etc. For instance, the
bitstream 134 may be transmitted to another electronic device
via a Local Area Network (LAN), the Internet, a cellular
phone base station, etc. The bitstream 134 may additionally or
alternatively be stored in memory on the electronic device
102.

FIG. 2 is a block diagram illustrating one configuration of
an electronic device 270 including a decoder 272 that may be
a high-efficiency video coding (HEVC) decoder. The decoder
272 and one or more of the elements illustrated as included in
the decoder 272 may be implemented in hardware, software
or a combination of both. The decoder 272 may receive a
bitstream 234 (e.g., one or more coded pictures included in
the bitstream 234) for decoding. In some configurations, the
received bitstream 234 may include received overhead infor-
mation, such as a received slice header, received picture
parameter set (PPS), received buffer description information,
classification indicator, etc.

Received symbols (e.g., encoded TQCs) from the bit-
stream 234 may be entropy decoded by an entropy decoding
module 274. This may produce a motion information signal
298 and decoded transformed and quantized coefficients
(TQCs) 278.

The motion information signal 298 may be combined with
aportion of a decoded picture 292 from a frame memory 290
atamotion compensation module 294, which may produce an
inter-frame prediction signal 296. The decoded transformed
and quantized coefficients (TQCs) 278 may be inverse quan-
tized and inverse transformed by an inverse quantization and
inverse transformation module 280, thereby producing a
decoded residual signal 282. The decoded residual signal 282
may be added to a prediction signal 205 by a summation
module 207 to produce a combined signal 284. The prediction
signal 205 may be a signal selected from either the inter-
frame prediction signal 296 produced by the motion compen-
sation module 294 or an intra-frame prediction signal 203
produced by an intra-frame prediction module 201. In some
configurations, this signal selection may be based on (e.g.,
controlled by) the bitstream 234.

The intra-frame prediction signal 203 may be predicted
from previously decoded information from the combined sig-
nal 284 (in the current frame, for example). The combined
signal 284 may also be filtered by a deblocking filter 286. The
resulting filtered signal 288 may be provided to a sample
adaptive offset (SAO) module 231. Based on the filtered
signal 288 and information 239 from the entropy decoding
module 274, the SAO module 231 may produce an SAO
signal 235 that is provided to an adaptive loop filter (ALF)
233. The ALF 233 produces an ALF signal 237 that is pro-
vided to the frame memory 290. The ALF signal 237 may

25

30

35

40

45

50

55

6

include data from one or more pictures that may be used as
reference pictures. The ALF signal 237 may be written to
frame memory 290. The resulting ALF signal 237 may
include a decoded picture. In some cases the ALF 233 may be
omitted.

The frame memory 290 may include a decoded picture
buffer (DPB). The frame memory 290 may also include over-
head information corresponding to the decoded pictures. For
example, the frame memory 290 may include slice headers,
picture parameter set (PPS) information, cycle parameters,
buffer description information, etc. One or more of these
pieces of information may be signaled from a coder (e.g.,
encoder 108).

The frame memory 290 may provide one or more decoded
pictures 292 to the motion compensation module 294. Fur-
thermore, the frame memory 290 may provide one or more
decoded pictures 292, which may be output from the decoder
272. The one or more decoded pictures 292 may be presented
on a display, stored in memory or transmitted to another
device, for example.

FIG. 3 is a block diagram illustrating one example of an
ecoder 308 and a decoder 372. In this example, electronic
device A 302 and electronic device B 370 are illustrated.
However, it should be noted that the features and functionality
described in relation to electronic device A 302 and electronic
device B 370 may be combined into a single electronic device
in some configurations.

Electronic device A 302 includes the encoder 308. The
encoder 308 may be implemented in hardware, software or a
combination of both. In one configuration, the encoder 308
may be a high-efficiency video coding (HEVC) coder. Other
coders may likewise be used. Electronic device A 302 may
obtain a source 306. In some configurations, the source 306
may be captured on electronic device A 302 using an image
sensor, retrieved from memory or received from another elec-
tronic device.

The encoder 308 may code the source 306 to produce a
bitstream 334. For example, the encoder 308 may code a
series of pictures (e.g., video) in the source 306. The encoder
308 may be similar to the encoder 108 described above in
connection with FIG. 1.

The bitstream 334 may include coded picture data based on
the source 306. In some configurations, the bitstream 334
may also include overhead data, such as slice header infor-
mation, PPS information, etc. As additional pictures in the
source 306 are coded, the bitstream 334 may include one or
more coded pictures.

The bitstream 334 may be provided to the decoder 372. In
one example, the bitstream 334 may be transmitted to elec-
tronic device B 370 using a wired or wireless link. In some
cases, this may be done over a network, such as the Internet or
a Local Area Network (LAN). As illustrated in FIG. 3, the
decoder 372 may be implemented on electronic device B 370
separately from the encoder 308 on electronic device A 302.
However, it should be noted that the encoder 308 and decoder
372 may be implemented on the same electronic device in
some configurations. In an implementation where the
encoder 308 and decoder 372 are implemented on the same
electronic device, for instance, the bitstream 334 may be
provided over a bus to the decoder 372 or stored in memory
for retrieval by the decoder 372.

The decoder 372 may be implemented in hardware, soft-
ware or a combination of both. In one configuration, the
decoder 372 may be a high-efficiency video coding (HEVC)
decoder. Other decoders may likewise be used. The decoder
372 may be similar to the decoder 272 described above in
connection with FIG. 2.

US 9,426,468 B2

7

FIG. 4 illustrates various components that may be utilized
in an electronic device 409. The electronic device 409 may be
implemented as one or more of the electronic devices. For
example, the electronic device 409 may be implemented as
the electronic device 102 described above in connection with
FIG. 1, as the electronic device 270 described above in con-
nection with FIG. 2, or both.

The electronic device 409 includes a processor 417 that
controls operation of the electronic device 409. The processor
417 may also be referred to as a CPU. Memory 411, which
may include both read-only memory (ROM), random access
memory (RAM) or any type of device that may store infor-
mation, provides instructions 413a (e.g., executable instruc-
tions) and data 4154 to the processor 417. A portion of the
memory 411 may also include non-volatile random access
memory (NVRAM). The memory 411 may be in electronic
communication with the processor 417.

Instructions 4135 and data 4155 may also reside in the
processor417. Instructions 4135 and/or data 4155 loaded into
the processor 417 may also include instructions 413a and/or
data 415a from memory 411 that were loaded for execution or
processing by the processor 417. The instructions 4135 may
be executed by the processor 417 to implement one or more
techniques disclosed herein.

The electronic device 409 may include one or more com-
munication interfaces 419 for communicating with other
electronic devices. The communication interfaces 419 may
be based on wired communication technology, wireless com-
munication technology, or both. Examples of communication
interfaces 419 include a serial port, a parallel port, a Universal
Serial Bus (USB), an Ethernet adapter, an IEEE 1394 bus
interface, a small computer system interface (SCSI) bus inter-
face, an infrared (IR) communication port, a Bluetooth wire-
less communication adapter, a wireless transceiver in accor-
dance with 3rd Generation Partnership Project (3GPP)
specifications and so forth.

The electronic device 409 may include one or more output
devices 423 and one or more input devices 421. Examples of
output devices 423 include a speaker, printer, etc. One type of
output device that may be included in an electronic device 409
is a display device 425. Display devices 425 used with con-
figurations disclosed herein may utilize any suitable image
projection technology, such as a cathode ray tube (CRT),
liquid crystal display (L.CD), light-emitting diode (LED), gas
plasma, electroluminescence or the like. A display controller
427 may be provided for converting data stored in the
memory 411 into text, graphics, and/or moving images (as
appropriate) shown on the display 425. Examples of input
devices 421 include a keyboard, mouse, microphone, remote
control device, button, joystick, trackball, touchpad, touch-
screen, lightpen, etc.

The various components of the electronic device 409 are
coupled together by a bus system 429, which may include a
power bus, a control signal bus and a status signal bus, in
addition to a data bus. However, for the sake of clarity, the
various buses are illustrated in FIG. 4 as the bus system 429.
The electronic device 409 illustrated in FIG. 4 is a functional
block diagram rather than a listing of specific components.

The term “computer-readable medium” refers to any avail-
able medium that can be accessed by a computer or a proces-
sor. The term “computer-readable medium,” as used herein,
may denote a computer- and/or processor-readable medium
that is non-transitory and tangible. By way of example, and
not limitation, a computer-readable or processor-readable
medium may comprise RAM, ROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium that can be

10

15

20

25

30

35

40

45

50

55

60

65

8

used to carry or store desired program code in the form of
instructions or data structures and that can be accessed by a
computer or processor. Disk and disc, as used herein, includes
compact disc (CD), laser disc, optical disc, digital versatile
disc (DVD), floppy disk and Blu-ray® disc where disks usu-
ally reproduce data magnetically, while discs reproduce data
optically with lasers. The code for the decoder and/or encoder
may be stored on a computer readable medium.

An input picture comprising a plurality of coded tree
blocks (e.g., generally referred to herein as blocks) may be
partitioned into one or several slices. The values of the
samples in the area of the picture that a slice represents may
be properly decoded without the use of data from other slices
provided that the reference pictures used at the encoder and
the decoder are the same and that de-blocking filtering does
not use information across slice boundaries. Therefore,
entropy decoding and block reconstruction for a slice does not
depend on other slices. In particular, the entropy coding state
may be reset at the start of each slice. The data in other slices
may be marked as unavailable when defining neighborhood
availability for both entropy decoding and reconstruction.
The slices may be entropy decoded and reconstructed in
parallel. No intra prediction and motion-vector prediction is
preferably allowed across the boundary of a slice. In contrast,
de-blocking filtering may use information across slice bound-
aries.

FIG. 5 illustrates an exemplary video picture 500 compris-
ing eleven blocks in the horizontal direction and nine blocks
in the vertical direction (nine exemplary blocks labeled 501-
509). FIG. 5 illustrates three exemplary slices: a first slice
denoted “SLICE #0” 520, a second slice denoted “SLICE #1”
530 and a third slice denoted “SLICE #2” 540. The decoder
may decode and reconstruct the three slices 520, 530, 540, in
parallel. Each of the slices may be transmitted in scan line
order in a sequential manner. At the beginning of the decod-
ing/reconstruction process for each slice, context models are
initialized or reset and blocks in other slices are marked as
unavailable for both entropy decoding and block reconstruc-
tion. The context model generally represents the state of the
entropy encoder and/or decoder. Thus, for a block, for
example, the block labeled 503, in “SLICE #1”, blocks (for
example, blocks labeled 501 and 502) in “SLICE #0” may not
be used for context model selection or reconstruction.
Whereas, for a block, for example, the block labeled 505, in
“SLICE #1,” other blocks (for example, blocks labeled 503
and 504) in “SLICE #1” may be used for context model
selection or reconstruction. Therefore, entropy decoding and
block reconstruction proceeds serially within a slice. Unless
slices are defined using a flexible block ordering (FMO),
blocks within a slice are processed in the order of a raster
scan.

FIG. 6 depicts an exemplary block allocation into three
slice groups: a first slice group denoted “SLICE GROUP #0”
550, a second slice group denoted “SLICE GROUP #1” 560
and a third slice group denoted “SLICE GROUP #2” 570.
These slice groups 550, 560, 570, may be associated with two
foreground regions and a background region, respectively, in
the picture 580.

The arrangement of slices, as illustrated in FIG. 5, may be
limited to defining each slice between a pair of blocks in the
image scan order, also known as raster scan or a raster scan
order. This arrangement of scan order slices is computation-
ally efficient but does not tend to lend itself to the highly
efficient parallel encoding and decoding. Moreover, this scan
order definition of slices also does not tend to group smaller
localized regions of the image together that are likely to have
common characteristics highly suitable for coding efficiency.

US 9,426,468 B2

9

The arrangement of slices, as illustrated in FIG. 6, is highly
flexible in its arrangement but does not tend to lend itself to
high efficient parallel encoding or decoding. Moreover, this
highly flexible definition of slices is computationally com-
plex to implement in a decoder.

Referring to FIG. 7, a tile technique divides an image into
a set of rectangular (inclusive of square) regions. The blocks
(alternatively referred to as largest coding units or coded
treeblocks in some systems) within each of the tiles are
encoded and decoded in a raster scan order. The arrangement
of tiles are likewise encoded and decoded in a raster scan
order. Accordingly, there may be any suitable number of
column boundaries (e.g., O or more) and there may be any
suitable number of row boundaries (e.g., 0 or more). Thus, the
frame may define one or more slices, such as the one slice
illustrated in FIG. 7. In some embodiments, blocks located in
different tiles are not available for intra-prediction, motion
compensation, entropy coding context selection or other pro-
cesses that rely on neighboring block information.

Referring to FIG. 8, the tile technique is shown dividing an
image into a set of three rectangular columns. The blocks
(alternatively referred to as largest coding units or coded
treeblocks in some systems) within each of the tiles are
encoded and decoded in a raster scan order. The tiles are
likewise encoded and decoded in a raster scan order. One or
more slices may be defined in the scan order of the tiles. Each
of'the slices are independently decodable. For example, slice
1 may be defined as including blocks 1-9, slice 2 may be
defined as including blocks 10-28, and slice 3 may be defined
asincluding blocks 29-126 which spans three tiles. The use of
tiles facilitates coding efficiency by processing data in more
localized regions of a frame.

It is to be understood that in some cases the video coding
may optionally not include tiles, and may optionally include
the use of a wavefront encoding/decoding pattern for the
frames of the video. In this manner, one or more lines of the
video (such as a plurality of groups of one or more rows of
macroblocks (or alternatively coded tree blocks), each of
which group being representative of a wavefront substream
may be encoded/decoded in a parallel fashion. In general, the
partitioning of the video may be constructed in any suitable
manner.

Video coding standards often compress video data for
transmission over a channel with limited frequency band-
width and/or limited storage capacity. These video coding
standards may include multiple coding stages such as intra
prediction, transform from spatial domain to frequency
domain, quantization, entropy coding, motion estimation,
and motion compensation, in order to more effectively
encode and decode frames. Many of the coding and decoding
stages are unduly computationally complex.

Various scalable video coding techniques have been devel-
oped. Inscalable video coding a primary bit stream (generally
referred to as the base layer bitstream) is received by a
decoder. In addition, the decoder may receive one or more
secondary bitstream(s) (generally referred to as enhancement
layer(s)). The function of each enhancement layer may be: to
improve the quality of the base layer bitstream; to improve the
frame rate of the base layer bitstream; and/or to improve the
pixel resolution of the base layer bitstream. Quality scalabil-
ity is also referred to as Signal-to-Noise Ratio (SNR) scal-
ability. Frame rate scalability is also referred to as temporal
scalability. Resolution scalability is also referred to as spatial
scalability.

Enhancement layer(s) can change other features of the base
layer bitstream. For example, an enhancement layer can be
associated with a different aspect ratio and/or viewing angle

25

30

35

40

45

55

10

than the base layer. Another aspect of enhancement layers is
that the base layer and an enhancement layer may correspond
to different video coding standards, e.g. the base layer may be
MPEG-2 (Motion Pictures Experts Group 2) and an enhance-
ment layer may be HEVC-Ext (High Efficiency Video Coding
extension).

An ordering may be defined between layers. For example:

Base layer (lowest) [layer 0]
Enhancement layer O [layer 1]
Enhancement layer 1 [layer 2]

Enhancement layer n (highest) [layern + 1]

The enhancement layer(s) may have dependency on one
another (in an addition to the base layer). In an example,
enhancement layer 2 is usable only if at least a portion of
enhancement layer 1 has been parsed and/or reconstructed
successfully (and if at least a portion of the base layer has
been parsed and/or reconstructed successfully).

The bitstream of the coded video may include a syntax
structure that is placed into logical data packets generally
referred to as Network Abstraction Layer (NAL) units. Each
NAL unit includes a NAL unit header, such as a two-byte
NAL unit header (e.g., 16 bits), to identify the purpose of the
associated data payload. For example, each coded slice (and/
or picture) may be coded in one or more slice (and/or picture)
NAL units. Other NAL units may be included for other cat-
egories of data, such as for example, supplemental enhance-
ment information, coded slice of temporal sub-layer access
(TSA) picture, coded slice of step-wise temporal sub-layer
access (STSA) picture, coded slice a non-TSA, non-STSA
trailing picture, coded slice of broken link access picture,
coded slice of instantaneous decoded refresh picture, coded
slice of clean random access picture, coded slice of decodable
leading picture, coded slice of tagged for discard picture,
video parameter set, sequence parameter set, picture param-
eter set, access unit delimiter, end of sequence, end of bit-
stream, filler data, and/or sequence enhancement information
message. Other NAL unit types may be included, as desired.

A random access point picture (RAP) picture contains only
I slices and may be a broken link access (BLA) picture, a
clean random access (CRA) picture, or an instantaneous
decoding refresh (IDR) picture. The first picture in the bit-
stream is a RAP picture.

A broken link access picture (BLA) picture is one type of
RAP picture. A BLA picture contains only I slices, and may
be the first picture in the bitstream in decoding order, or may
appear later in the bitstream. Each BLA picture begins a new
coded video sequence, and has the same effect on the decod-
ing process as an IDR picture. However, a BLA picture con-
tains syntax elements that, if it had been CRA picture instead,
would specify a non-empty reference picture set. When a
BLA picture is encountered in a bitstream, these syntax ele-
ments are ignored and the reference picture set is instead
initialized as an empty set.

A clean random access (CRA) picture is one type of RAP
picture. A CRA picture contains only I slices, and may be the
first picture in the bitstream in decoding order, or may appear
later in the bitstream. A CRA picture may have associated
decodable leading pictures (DLP) and Tagged for discard
(TFD) pictures.

An instantaneous decoding refresh (IDR) picture is a type
of RAP picture. An IDR picture contains only I slices, and
may be the first picture in the bitstream in decoding order, or

US 9,426,468 B2

11

may appear later in the bitstream. Each IDR picture is the first
picture of a coded video sequence in decoding order.

A decodable leading picture (DLP) are leading pictures.
DLP pictures are not used as reference pictures for the decod-
ing process of trailing pictures of the same associated RAP
picture.

A tagged for discard (TFD) picture are leading pictures of
anassociated BLA or CRA picture. When the associated RAP
picture is a BLA picture or is the first coded picture in the
bitstream, the TFD picture is not output and may not be
correctly decodable, as the TFD picture may contain refer-
ences to reference pictures that are not present in the bit-
stream.

A leading picture is a picture that precedes the associated
RAP picture in output order.

A ftrailing picture is a picture that follows the associated
RAP picture in output order.

The NAL unit provides the capability to map the video
coding layer (VCL) data that represents the content of the
pictures onto various transport layers. The NAL units may be
classified into VCL and non-VCL NAL units according to
whether they contain coded picture or other associated data,
respectively. B. Bros, W-J. Han, J-R. Ohm, G. J. Sullivan, and
T-. Wiegand, “High efficiency video coding (HEVC) text
specification draft 8, JCTVC-J10003, Stockholm, July
2012; “BoG on high-level syntax for extension planning”,
Ye-Kui Wang, JCTVC-J00574, July 2012; and “BoG on high-
level syntax for extension planning”, Ye-Kui Wang, JCTVC-
JO0574r1, July 2012, are hereby incorporated by reference
herein in their entirety.

Referring to FIG. 9A, the NAL unit header syntax may
include two bytes of data, namely, 16 bits. The first bit is a
“forbidden_zero_bit” which is always set to zero at the start
of a NAL unit. The next six bits is a “nal_unit_type” which
specifies the type of raw byte sequence payloads (“RBSP”)
data structure contained in the NAL unit. The next 6 bits is a
“nuh_reserved_zero_6 bits”. The nuh_reserved_zero_6 bits
may be equal to 0 in the base specification of the standard.
Other values of nuh_reserved_zero_6 bits may be specified as
desired. Decoders may ignore (i.e., remove from the bit-
stream and discard) all NAL units with values of
nuh_reserved_zero_6 bits not equal to 0 when handling a
stream based on the base specification of the standard. In a
scalable or other extension nuh_reserved_zero_6 bits may
specify other values, to signal scalable video coding and/or
syntax extensions. In some cases syntax element
nuh_reserved_zero_6 bits may be called reserved_zero_6
bits. In some cases the syntax element nuh_reserved_zero_6
bits may be called as layer_id_plusl1 or layer_id, as illustrated
in FIG. 9B and FIG. 9C. In this case the element layer_id will
be layer_id_plusl minus 1. In this case it may be used to
signal information related to layer of scalable coded video.
The next syntax element is “nuh_temporal_id_plusl”.
nuh_temporal_id_plusl minus 1 may specify a temporal
identifier for the NAL unit. The variable temporal identifier
Temporalld may be specified as
Temporalld=nuh_temporal_id_plus1-1.

Referring to FIG. 10, a general NAL unit syntax structure
is illustrated. The NAL unit header two byte syntax of FIG. 9
is included in the reference to nal_unit_header() of FIG. 10.
The remainder of the NAL unit syntax primarily relates to the
RBSP.

One existing technique for using the “nuh_reserved_z-
ero_6 bits” is to signal scalable video coding information by
partitioning the 6 bits of the nuh_reserved_zero_6 bits into
distinct bit fields, namely, one or more of a dependency ID, a
quality ID, a view ID, and a depth flag, each of which refers to

15

20

25

30

40

45

12

the identification of a different layer of the scalable coded
video. Accordingly, the 6 bits indicate what layer of the scal-
able encoding technique this particular NAL unit belongs to.
Then in a data payload, such as a video parameter set (“VPS”)
extension syntax (“scalability_type”) as illustrated in FIG.
11, the information about the layer is defined. The VPS exten-
sion syntax of FIG. 11 includes 4 bits for scalability type
(syntax element scalability_type) which specifies the scal-
ability types in use in the coded video sequence and the
dimensions signaled through layer_id_plus1 (or layer_id) in
the NAL unit header. When the scalability type is equal to 0,
the coded video sequence conforms to the base specification,
thus layer_id_plus1 ofall NAL units is equal to 0 and there are
no NAL units belonging to an enhancement layer or view.
Higher values of the scalability type are interpreted as illus-
trated in FIG. 12.

The layer_id_dim_len[i] specifies the length, in bits, of the
i-th scalability dimension ID. The sum of the values
layer_id_dim_len[i] for all i values in the range of 0 to 7 is less
than or equal to 6. The vps_extension_byte_alignment_re-
served_zero_bit is zero. The vps_layer_id[i] specifies the
value of layer_id of the i-th layer to which the following layer
dependency information applies. The num_direct_ref_layers
[1] specifies the number of layers the i-th layer directly
depends on. The ref_layer_id[i][j] identifies the j-th layer the
i-th layer directly depends on.

In this manner, the existing technique signals the scalabil-
ity identifiers in the NAL unit and in the video parameter set
to allocate the bits among the scalability types listed in FIG.
12. Then for each scalability type, FIG. 12 defines how many
dimensions are supported. For example, scalability type 1 has
2 dimensions (i.e., spatial and quality). For each of the dimen-
sions, the layer_id_dim_len[i] defines the number of bits
allocated to each of these two dimensions, where the total
sum of all the values of layer_id_dim_len[i] is less than or
equal to 6, which is the number of bits in the nuh_reserved_z-
ero_6 bits of the NAL unit header. Thus, in combination the
technique identifies which types of scalability is in use and
how the 6 bits of the NAL unit header are allocated among the
scalability.

While such a fixed combination of different scalability
dimensions, as illustrated in FIG. 12, is suitable for many
applications there are desirable combinations which are not
included. Referring to FIG. 13, a modified video parameter
set extension syntax specifies a scalability type for each bitin
the nuh_reserved_zero_6 bits syntax element. The vps_ex-
tension_byte_alignment_reserved_zero_bit is set to 0. The
max_num_layers_minus1_bits indicates the total number of
bits used for the syntax element in the first two bytes of the
NAL unit header in FIG. 9 referred to as layer_id_plusl or
nuh_reserved_zero_6 bits. The scalability_map[i] specifies
the scalability type for each bit in the layer_id_plus1 syntax
element. In some case the layer_id_plus] sytax element may
be instead called nuh_reserved_zero_6 bits or reserved_z-
ero_6 bits syntax element. The scalability map for all the bits
of the syntax element layer_id_plus] together specifies the
scalability in use in the coded video sequence. The actual
value of the identifier for each of the scalability types is
signaled through those corresponding bits in the
layer_id_plus1 (nuh_reserved_zero_6 bits) field in the NAL
unit header. When scalability_mapli] is equal to 0 for all
values of 1, the coded video sequence conforms to the base
specification, thus layer_id_plus1 value of NAL units is equal
to 0 and there are no NAL units belonging to an enhancement
layer or view. The vps_layer_id[i] specifies the value of lay-
er_id of the i-th layer to which the following layer depen-
dency information applies. The num_direct_ref layers|i]

US 9,426,468 B2

13

specifies the number of layers the i-th layer directly depends
on. Theref layer_id[i][j] identifies the j-th layer the i-th layer
directly depends on.

Higher values of scalability_map[i] are interpreted as
shown in FIG. 14. The scalability map [i] includes the scal-
ability dimensions of (0) none; (1) spatial; (2) quality; (3)
depth; (4) multiview; (5) unspecified; (6) reserved; and (7)
reserved.

Therefore each bit in the NAL unit header is interpreted
based on the 3 bits in the video parameter set of what is the
scalability dimension (e.g., none, spatial, quality, depth, mul-
tiview, unspecified, reserved). For example, to signal that all
the bits in layer_id_plus] correspond to spatial scalability, the
scalability_map values in the VPS may be coded as 001 001
001 001 001 001 for the 6 bits of the NAL unit header. Also for
example, to signal that 3 bits in layer_id_plus1 correspond to
spatial scalability and 3 bits correspond to quality scalability,
the scalability_map values in the VPS may be coded as 001
001 001 010 010 010 for the 6 bits of the NAL Unit header.

Referring to FIG. 15, another embodiment includes the
video parameter set signaling the number of scalability
dimensions in the 6 bits of the NAL unit header using the
num_scalability_dimensions_minus]1. The num__
scalability_dimensions_minus] plus 1 indicates the number
of scalability dimensions signaled through the
layer_id_plus1; nuh_reserved_zero_6 bits; and/or
reserved_zero_6 bits syntax elements. The scalability_map
[i] has the same semantics as described above in relation to
FIG. 13. The num_bits_for_scalability_map[i] specifies the
length in bits for the 1’th scalability dimension. The sum of all
of the num_bits_for_scalability_map][i] for i=0, . . . num_
scalability_dimensions_minus] is equal to six (or otherwise
equal to the number of bits used for layer_id_plusl; vps_re-
served_zero_6 bits; max_num_layers_minusl; reserved_z-
ero_6 bits; nuh_reserved_zero_6 bits syntax elements).

With respect to FIG. 13 and FIG. 15 other variations may
be used, if desired. In one embodiment for example, the
scalability_map|[i] may be signaled with u(4) (or u(n) with
n>3 or n<3). In this case the higher values of scalability_map
[1] may be specified as reserved for bitstreams conforming to
aparticular profile of the video technique. For example, scal-
ability map values 6 . . . 15 may be specified as ‘reserved’
when signaling scalability_map[i] with u(4). In another
embodiment for example, scalability_map|[i] maybe signaled
with ue(v) or some other coding scheme. In another embodi-
ment for example, a restriction may be specified such that the
scalability_map|i] values are arranged in monotonic non
decreasing (or non-increasing) order. This results in various
scalability dimension fields in the layer_id_plusl field in
NAL unit header being contiguous.

Another existing technique for signaling the scalable video
coding using the “layer_id_plus1” or “nuh_reserved_zero_6
bits” syntax element is to map the layer_id_plus1 in the NAL
unit header to a layer identification by signaling a general
lookup table in the video parameter set. Referring to FIG. 16,
the existing technique includes a video parameter set that
specifies the number of dimension types and dimension iden-
tifications for the i-th layer of the lookup table. In particular,
the vps_extension_byte_alignment_reserved_zero_bit is
zero. The num_dimensions_minus1[i] plus 1 specifies the
number of dimension types (dimension_type[i][j]) and
dimension identifiers (dimension_id[i][j]) for the i-th layer.
The dimension_type[i][j] specifies the j-th scalability dimen-
sion type of the i-th layer, which has layer_id or
layer_id_plus1 equal to i, as specified in FIG. 17. As illus-
trated in FIG. 17, the dimensions that are identified include of
(0) view order idx; (1) depth flag; (2) dependency ID; (3)

25

30

35

40

45

50

55

60

65

14

quality ID; (4)-(15) reserved. The dimension_id[i][j] speci-
fies the identifier of the j-th scalability dimension type of the
i-th layer, which when not present is inferred to be 0. The
num_direct_ref layers[i] specifies the number of layers the
i-th layer directly depends on. Theref_layer_id[i][j] identifies
the j-th layer the i-th layer directly depends on. Unfortunately,
the proposed embodiment illustrated in FIG. 16 results in an
unwieldy large lookup table.

Referring to FIG. 18, amodified video parameter set exten-
sion includes a scalability mask that is used in combination
with a scalability dimension. The scalability_mask signals a
pattern of 0 and 1 bits with each bit corresponding to one
scalability dimension as indicated by the scalability map syn-
tax of FIG. 19. A value of 1 for a particular scalability dimen-
sion indicates that this scalability dimension is present in this
layer (i’th layer). A value of 0 for a particular scalability
dimension indicates that this scalability dimension is not
present in this layer (i’th layer). For example, a set of bits of
00100000 refers to quality scalability. The actual identifier
value of the particular scalability dimension that is present is
indicated by the scalability_id[j] value signaled. The values
of num_scalability_types|i] is equal to the sum of number of
bits in the scalability_mask having value of 1. Thus
num_scalability_types

=

7
k=0

sealability_mask[i](k). The scalability_id[j] indicates the j-th
scalability dimension’s identifier value for the type of scal-
ability values that are signaled by the scalability_mask value.

Referring to FIG. 20, a modification of FIG. 18, includes
the scalability mask being signaled outside the loop. This
results in one common mask for each layer identification.
Referring to FIG. 21, in this modification a corresponding
exemplary video parameter set may include the scalable iden-
tification with the scalability mask not being included. In this
case the syntax element scalable_id[j] has same interpretation
as the syntax element scalability_id[j] in FIG. 18.

Referring to FIG. 22 a modification of FIG. 18 includes the
scalability mask (scalability_mask) being signaled outside
the loop. This results in one common mask for each layer
identification. The scalability_mask signals a pattern of 0 and
1 bits with each bit corresponding to one scalability dimen-
sion as indicated by the scalability map syntax of FIG. 23. A
value of 1 for a particular scalability dimension indicates that
this scalability dimension is present in this layer (i’th layer).
A value of 0 for a particular scalability dimension indicates
that this scalability dimension is not present in this layer (i’th
layer). For example, a set of bits of 00100000 refers to quality
scalability. The actual identifier value of the particular scal-
ability dimension that is present is indicated by the scalabili-
ty_id[j] value signaled. The values of num_scalability_types
[i]] is equal to the sum of number of bits in the
scalability_mask having value of 1. Thus NumScalability-
Types

scalability_mask(k). In this case the scalability_id[j] variable
may instead be called dimension_id[i][j] variable. dimen-

US 9,426,468 B2

15
sion_id[1][j] specifies the scalability identifier of the j-th scal-
ability dimension of the i-th layer. Then a variable Scalabili-
tyld[i][j] is derived as follows.

for(i=1;i<=vps_max_layers_minusl; i++) {
for(k=0, j=0; k<=15; k++) {
if(scalability_mask(k)==1)
ScalabilityId [i][k]=dimension_id[i][j++]
else
ScalabilityId [i][k]=0;

Where the Scalabilityld [i][k] signals dimension ID for the
corresponding scalability type as follows.

Scalabilityld
k [i1[k]
0 Dependencyld[i][k]
1 QualityId[i][k]
2 depthFlag[i][k]
3 Viewld[i][k]
4-15 Reserved

Where Dependencyld[i][1] is the dependency ID for the spa-
tial scalability dimension for the i-th layer, QualityId[i][2] is
the quality ID for the quality scalability dimension for the i-th
layer, depthFlag[i][3] is the depth flag/depth ID for the depth
scalability dimension for the i-th layer, and Viewld[i][4] is the
view 1D for the multiview scalability dimension for the i-th
layer.

Also in FIG. 22 avc_base_codec_flag equal to 1 specifies
that the base layer conforms to Rec. ITU-T H.264|ISO/IEC
14496-10, and avc_base_codec_flag equal to 1 specifies to
HEVC. vps_nuh_layer_id_present_flag indicates if lay-
er_id_in_nuh[i] variable which signals the value of layer_id
in NAL unit header is signaled.

In another embodiment one or more of the syntax elements
scalability_mask[i], scalability_mask, scalability_id[j] may
be signaled using different number of bits than u(8). For
example they could be signaled with u(16) (or u(n) with n>8
or n<8). In another embodiment one or more of these syntax
element could be signaled with ue(v). In another embodiment
the scalability_mask may be signaled in the NAL unit header
in layer_id_plusl; vps_reserved_zero_6 bits; max_num_lay-
ers_minusl; reserved_zero_6 bits; and/or nuh_reserved_z-
ero_6 bits syntax elements. In some embodiments the system
may do this only for VPS NAL units, or only for non-VPS
NAL units, or for all NAL units. In yet another embodiment
scalability_mask may be signaled per picture anywhere in the
bitstream. For example it may be signaled in slice header,
picture parameter set, video parameter set, or any other
parameter set or any other normative part of the bistream.

It should be noted that FIGS. 13,15, 18, 20, 21, 22, 23 and
corresponding description refer to 6 bits since the syntax
element nuh_reserved_zero_6 bits or layer_id_plus1 in NAL
unit header of FIG. 9 has 6 bits. However all the above
description can be suitably modified if that syntax element
used a different number of bits than 6 bits. For example if that
syntax element (nuh_reserved_zero_6 bits or layer_id_
plusl) instead used 9 bits then in FIG. 13 the value
of max_num_layer minusl bits will be 9 and the
scalability_map|i] will be signaled for each of the 9 bits
instead of 6 bits.

Referring to FIG. 24 a modification of FIG. 22 provides
syntax for signaling layer dependency information. New syn-

10

15

20

25

30

35

40

45

50

55

60

65

16

tax element layer_dependency_information_pattern is
defined. layer_dependency_information_pattern signals a
pattern of O and 1 bits with the length equal to vps_max_lay-
ers_minusl. A value of 0 for i’th bit indicates that the layer
with layer_id (i+1) is an independent layer. A value of 1 for
i’th bit indicates that the layer with layer_id (i+1) is a depen-
dent layer which depends on one or more of other layers. The
values of NumDepLayers is equal to the sum of number of
bits in the layer_dependency_information_pattern having
value of 1. Thus

NumDepLayers =

vps_max_layer_minusl—1
layer_dependency information pattern(k)
=0

Referring to FIG. 25 a modification of FIG. 22 provides
syntax for signaling layer dependency information. New syn-
tax element layer_dependency_flag[i] is defined. layer_de-
pendency_flag][i] signals if a layer depends on other layers. A
value of 0 for the flag indicates that the layer with layer_id i is
anindependent layer. A value of 1 fori’th bit indicates that the
layer with layer_id i is a dependent layer.

Referring to FIG. 26 a modification of FIG. 22 provides
syntax for signaling layer dependency information. New syn-
tax element layer_dependency_map[i] is defined. layer_de-
pendency_mapl[i] signals a pattern of 0 and 1 bits with the
length equal to vps_max_layers_minusl. A value of O fork’th
bit of layer_dependency_map|i] indicates that the layeri does
not depend on layer with layer_id (k+1). A value of 1 for k’th
bit of layer_dependency_mapli] indicates that the layer i
depends on layer with layer_id (k+1).

Referring to FIG. 27 a modification of FIG. 22 provides
syntax for signaling layer dependency information. New syn-
tax element layer_dependency_information_pattern is
defined. layer_dependency_information_pattern signals a
pattern of O and 1 bits with the length equal to vps_max_lay-
ers_minusl. A value of 0 for i’th bit indicates that the layer
with layer_id (i+1) is an independent layer. A value of 1 for
i’th bit indicates that the layer with layer_id (i+1) is a depen-
dent layer which depends on one or more of other layers. The
values of NumDepLayers is equal to the sum of number of
bits in the layer_dependency_information_pattern having
value of 1. Thus

NumDepLayers =

vps_max_layer_minusl—1
layer_dependency information pattern(k)
=0

layer_dependency_map|i] signals a pattern of 0 and 1 bits
with the length equal to vps_max_layers_minus1. A value of
0 for k’th bit of layer_dependency_map][i] indicates that the
layer i does not depend on layer with layer_id (k+1). A value
of 1 for k’th bit of layer_dependency_mapl[i] indicates that
the layer i depends on layer with layer_id (k+1).

Referring to FIG. 28 a modification of FIG. 22 provides
syntax for signaling layer dependency information. FIG. 28 is
a variant syntax based on syntax in FIG. 24. New syntax
element layer_dependency_information_pattern is defined.
layer_dependency_information_pattern signals a pattern of O
and 1 bits with the length equal to vps_max_layers_minusl.
A value of O for i’th bit indicates that the layer with layer_id

US 9,426,468 B2

17

(i+1) is an independent layer. A value of 1 fori’th bitindicates
that the layer with layer_id (i+1) is a dependent layer which
depends on one or more of other layers. The values of Num-
DepLayers is equal to the sum of number of bits in the
layer_dependency_information_pattern having value of 1.
Thus

NumDepLayers =

vps_max_layer_minusl—1
layer_dependency information pattern(k)
=0

Syntax elements num_direct_ref_layers[i] and ref_layer_id
[1][j] are signaled only when layer_dependency_inform-
ation_pattern(i) has a value of 1. Where layer_
dependency_information_pattern(i) is the i’th bit of the syn-
tax element layer_dependency_pattern.

Referring to FIG. 29 a modification of FIG. 22 provides
syntax for signaling layer dependency information. FIG. 29 is
a variant syntax based on syntax in FIG. 27. New syntax
element layer_dependency_information_pattern is defined.
layer_dependency_information_pattern signals a pattern of O
and 1 bits with the length equal to vps_max_layers_minusl.
A value of 0 for i’th bit indicates that the layer with layer_id
(i+1) is an independent layer. A value of 1 fori’th bitindicates
that the layer with layer_id (i+1) is a dependent layer which
depends on one or more of other layers. The values of Num-
DepLayers is equal to the sum of number of bits in the
layer_dependency_information_pattern having value of 1.
Thus

NumDepLayers =

vps_max_layer_minusl—1
layer_dependency information pattern(k)
=0

layer_dependency_map|i] signals a pattern of 0 and 1 bits
with the length equal to vps_max_layers_minus1. A value of
0 for k’th bit of layer_dependency_map][i] indicates that the
layer i does not depend on layer with layer_id (k+1). A value
of 1 for k’th bit of layer_dependency_mapl[i] indicates that
the layer i depends on layer with layer_id (k+1). Syntax
elements layer_dependency_mapl[i] is signaled only when
layer_dependency_information_pattern(i) has a value of 1.
Where layer_dependency_information_pattern(i) is the i’th
bit of the syntax element layer_dependency_pattern.

In another embodiment layer_dependency_inform-
ation_pattern syntax element may be signaled as a set of 1 bit
flag values. In this case a total of vps_max_layers_minus1 1
bit values will be signaled as:

for(i=1;i<=vps_max_layers_minusl ; i++)

layer_dependency_information_pattern_flags([i];

In another embodiment layer_dependency_mapl[i] syntax
element may be signaled as a set of 1 bit flag values. In this
case a total of vps_max_layers_minus1 1 bit values will be
signaled as:

10

15

20

25

30

35

45

50

55

60

65

18

for(j = 1; j<= vps_max_layers_minus] ; j++)

layer_dependency_map_values[i][j];

In another embodiment one or more of the syntax
elements layer_dependency_information_pattern, layer_de-
pendency_map may be signaled using a known fixed number
of bits instead of u(v). For example they could be signaled
using u(64).

In another embodiment one or more of or more of the
syntax elements layer_dependency_information_pattern,
layer_dependency_map may be signaled with ue(v) or some
other coding scheme.

In another embodiment the names of various syntax ele-
ments and their semantics may be altered by adding a plus1 or
plus2 or by subtracting a minus1 or a minus2 compared to the
described syntax and semantics.

Inyet another embodiment various syntax elements such as
layer_dependency_information_pattern, layer_
dependency_map, layer_dependency_flag[i] etc. may be sig-
naled per picture anywhere in the bitstream. For example it
may be signaled in slice header, pps/sps/vps/aps or any other
parameter set or other normative part of the bitstream.

The terms and expressions which have been employed in
the foregoing specification are used therein as terms of
description and not of limitation, and there is no intention, in
the use of such terms and expressions, of excluding equiva-
lents of the features shown and described or portions thereof,
it being recognized that the scope of the invention is defined
and limited only by the claims which follow.

I claim:

1. A method for decoding a coded video sequence com-
prising:

receiving a video syntax set that includes information

applicable to said coded video sequence, where said
coded video sequence includes a plurality of layers of
coded video frames; and

decoding said coded video sequence with said video syntax

set;

wherein said video syntax set includes a dependency flag

indicating one or more direct dependencies between said
plurality of layers of said coded video sequence and said
video syntax set further includes a syntax element num-
ber and at least one pair of indexes (i,j) when said direct
dependency specifies said layer indexed by said second
index value is a direct reference layer for said layer
indexed by said first index value, and wherein said syn-
tax element number specifies the number of layers the
layer indexed by said first index value directly depends
on, wherein i is said first index value and j is said second
index value; and

wherein said direct dependency specifies whether a par-

ticular layer indexed by a second index value is a direct
reference layer for another layer indexed by a first index
value.

2. The method of claim 1 wherein when said dependency
flag with a value of O specifies that said particular layer
indexed by said second index value is not a said direct refer-
ence layer for said another layer indexed by said first index
value.

3. The method of claim 1 wherein said dependency flag
with a value of 1 specifies that said particular layer indexed by
said second index value may be a said direct reference layer
for said another layer indexed by said first index value.

US 9,426,468 B2

19

4. The method of claim 1 wherein said dependency flag is
not present for said first index value and said second index
value it is inferred to be 0.

5. The method of claim 1 wherein said dependency flag is
not present within a range of 0 to a value associated with a
maximum number of said plurality of layers for said first
index value and said second index value it is inferred to be 0.

6. The method of claim 1 wherein said pair of indexes i and
juse 1 bit for signaling.

7. The method of claim 1 wherein said decoding said coded
video sequence with said video syntax set comprises:

decoding said layer indexed by said first index value based

on said layer indexed by said a second index value when
a portion of said layer indexed by said second index
value has been parsed or reconstructed successfully.

8. An electronic device, comprising:

a processor; and

a non-transitory computer readable storage medium stor-

ing program for execution by the processor, the program
including instructions to:

receive a video syntax set that includes information appli-

cable to said coded video sequence, where said coded
video sequence includes a plurality of layers of coded
video frames; and

10

15

20

20

decode said coded video sequence with said video syntax

set;

wherein said video syntax set includes a dependency flag

indicating one or more direct dependencies between said
plurality of layers of said coded video sequence;
wherein said direct dependency specifies whether a par-
ticular layer indexed by a second index value is a direct
reference layer for another layer indexed by a first index
value; wherein said video syntax set further includes a
syntax element number and at least one pair of indexes
(i,)) when said direct dependency specifies said layer
indexed by said second index value is a direct reference
layer for said layer indexed by said first index value,
wherein said syntax element number specifies the num-
ber of layers the layer indexed by said first index value
directly depends on, wherein i is said first index value
and j is said second index value.

9. The device of claim 8 wherein the instructions to decode
said coded video sequence with said video syntax set include
instructions to decode said layer indexed by said first index
value based on said layer indexed by said second index value
when a portion of said particular layer indexed by said second
index value has been parsed or reconstructed successfully.

#* #* #* #* #*

